June 2001 MA - MI
1)
a)

Conser Vation of momentum:

$$
\begin{aligned}
3 \times 0.5+-2 \times 0.2 & =1.5 \times 0.5+V \times 0.2 \\
1.1 & =0.75+\theta .2 \mathrm{~V} \\
V & =1.75 \mathrm{~ms}^{-1}
\end{aligned}
$$

Remember, the question asked for speed ignore signs.
b)

$$
\begin{aligned}
\Delta P & =[1.75--2] \times 0.2 \\
& =0.75 \mathrm{Ns}_{\mathrm{s}}
\end{aligned}
$$

2)

Resolve Horizontally:

$$
5 \cos \left(\theta^{\circ}\right)+3 \cos \left(4 \theta^{\circ}\right)=7.30 N
$$

Resole vertically:

$$
5 \sin \left(\theta^{\circ}\right)+3 \sin \left(4 \theta^{\circ}\right)=1.93 N
$$

a) Magnitude of F

$$
\begin{aligned}
|F| & =\sqrt{F(i)^{2}+F(-\lambda)^{2}} \\
& =\sqrt{7.3^{2}+1.9^{2}} \\
& =7.55(3 \mathrm{sf})
\end{aligned}
$$

b) argument (direction) of F

$$
\begin{aligned}
\arg (F) & =\tan ^{-1}\left(\frac{F(\hat{F}}{F(-9)}\right) \\
& =\tan ^{-1}\left(\frac{1.9}{7.3}\right) \\
& =14.8^{\circ}(1 d p)
\end{aligned}
$$

PhysicsAndMathsTutor.com

Area of trapezium A:

$$
\frac{1}{2}(17+30) \times 3=70.5 \mathrm{~m}
$$

Area of rectangle B :

$$
(7-3) \times 17=68 \mathrm{~m}
$$

$$
70.5+68=138.5 \mathrm{~m}
$$

b) Mass is constant, therefore Force α acceleration

Straight line on a speed time graph shows constant acceleration
If $\mathrm{m} \& \mathrm{a}$ are constant, and $\mathrm{F}=\mathrm{ma}$
F is therefore constant.

PhysicsAndMathsTutor.com
3)
c)

$$
\begin{aligned}
\frac{\Delta \text { Spoed }}{\Delta \text { time }} & =\frac{17-3 \theta}{3-\theta} \\
& =-\frac{13}{3}
\end{aligned}
$$

$F=m a \therefore F=12 \theta \theta \times-\frac{13}{3}$

$$
\begin{aligned}
& F=-52 \theta \theta \\
& |F|=52 \theta \theta
\end{aligned}
$$

PhysicsAndMathsTutor.com
4)
a)

$F_{\max }$ acts against any motion. Since the parcel is about to move up the plane, $\mathrm{F}_{\text {max }}$ acts down the plane.
b)

Resolving $F(\searrow)$:

$$
30 \sin \left(30^{\circ}\right)=15 \mathrm{~N}
$$

Resolving $W(\searrow)$

$$
\begin{aligned}
3 g \cos \left(3 \theta^{\circ}\right) & =3 g \frac{\sqrt{3}}{2} \\
& =25.5 \mathrm{~N}
\end{aligned}
$$

$$
15+25.5=4 \theta .5 N(3 s f)
$$

4)

c) Resol Ding Forces (λ) up the plane

$$
\begin{aligned}
F_{\max }(\lambda) & =-F_{\max } N \\
W(\gamma) & =-3 y \sin (3 \theta) \\
& =-14.7 \mathrm{~N} \\
F(\lambda) & =30 \cos (3 \theta) \\
& =26.0 \mathrm{~N} \\
R(\lambda) & =\theta
\end{aligned}
$$

Forces in equilibrium

$$
\begin{aligned}
& 26 . \theta+\theta-14.7-F_{\text {max }}=\theta \\
& F_{\text {max }}=11.3 \mathrm{~N} \\
& =
\end{aligned} \begin{aligned}
& =|R| \\
\text { from }(b) & |R|=40.5 \\
\therefore \quad N & =\frac{11.3}{40.5} \\
& =\theta .279(3 \mathrm{sf})
\end{aligned}
$$

PhysicsAndMathsTutor.com
(5)
a) $\emptyset N$
b)

Uniform

$$
\therefore C x=x D=2 \mathrm{~m}
$$

Principle of moments

$$
\begin{aligned}
2 w & =(6-1) \times 1500 \\
w & =3750 \mathrm{~N}
\end{aligned}
$$

PhysicsAndMathsTutor.com

Principle of moments

$$
x w=5 \times 10 \theta 0
$$

\& From (b):

$$
(4-x) w=5 \times 15 \theta \theta
$$

$$
4 w-x w=7500
$$

$$
\begin{gathered}
4 w-x w+x w=750 \theta+50 \theta \theta \\
4 w=12,50 \theta \\
w=3,125 \mathrm{~N}
\end{gathered}
$$

d) $\operatorname{from}(c)$

$$
\begin{aligned}
3,125 x & =5000 N \\
x & =\frac{5}{8} \\
& =1.6
\end{aligned}
$$

e) AB remains a straight line at all times when forces are applied at either end.

A string would have flexed under force and not remained straight
6)

$$
F_{\text {(Resultant) }}=m_{T} a
$$

$$
\begin{aligned}
232 \theta-80 \theta-24 \theta & =(2 \theta 0 \theta+12 \theta \theta) u \\
128 \theta & =32 \theta \theta a \\
a & =\theta \cdot 4 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) Car:

$$
\begin{aligned}
T-24 \theta & =12 \theta \theta \times \theta .4 \\
T & =48 \theta+24 \theta \\
T & =720 \mathrm{~N}
\end{aligned}
$$

PhysicsAndMathsTutor.com
6)
c)

$$
\sin (\alpha)=\frac{1}{2 \theta}
$$

Model the system as 1 particle with 1 driving force and 1 combined resistance

$$
\begin{aligned}
W(-) & =3200 y \times \sin (a) \\
& =1568 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
232 \theta & -1568-80 \theta-24 \theta=-288 \mathrm{~N} \\
F & =m a \\
a & =\frac{-288}{32 \theta \theta} \\
& =-0.09 m_{i}^{2}
\end{aligned}
$$

answer: $\theta \cdot \theta 9 \mathrm{mis}^{2}$, Speed decreasing

PhysicsAndMathsTutor.com
7)

Line P follows the pipeline
Line Q goes through the radio mast and travels south east

$$
\begin{aligned}
& P=\left(6 i+\theta_{j}\right)+\lambda\left(\theta_{i}+j\right) \\
& Q=\left(\theta_{i}+2 j\right)+N(-i-j)
\end{aligned}
$$

walker where $P=Q$

$$
\begin{aligned}
& G_{i}+\lambda j=2 j-\mu_{i}-\mu_{j} \\
& G=-\mu \quad \therefore \quad \mu=-6 \\
& \lambda=2-\mu \quad \cdots \quad \lambda=8 \\
& \text { walnerat } 2 j-6(-i-j) \\
& (6 i+8 j)
\end{aligned}
$$

PhysicsAndMathsTutor.com

$$
7)
$$

b) $8^{2}+6^{2}=10^{2}$

$$
\frac{10 \mathrm{~km}}{5 \mathrm{kmL}^{-1}}=2 \mathrm{~h}
$$

C) Line R goes through the radio mast and travels north-west

$$
R=(\theta i+2 j)+v(-i+j)
$$

walker found where $P=R$

$$
\begin{array}{ll}
G i+\lambda j=2 j-\mu_{i}+\mu_{j} \\
G=-N & \\
\lambda=2+\mu & \\
& \quad \lambda=-G
\end{array}
$$

walker at $6 i-4 j$

If the rescue party have travelled half the distance towards intersect of P and Q (position vector $6 i+8 j$) then they travelled to R (position vector $3 \mathrm{i}+4 \mathrm{j}$)
Walker is at intersect of P and R (position vector $6 i-4 j$) labelled W

$$
\begin{aligned}
\overrightarrow{R W} & =(6 i-4 j)-(3 i+4 j) \\
& =3 i-8 j
\end{aligned}
$$

$$
\text { gradient of } \overrightarrow{R W} \text { is }
$$

$$
\tan ^{-1}\left(\frac{-8}{3}\right)
$$

$$
-69.4^{\circ}
$$

$$
\begin{aligned}
\alpha & =40+64.4^{\circ} \\
& =159.4^{\circ}
\end{aligned}
$$

